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Here, I present the numerical computation of speed and direction of the drift of a spiral wave in an excitable
medium in the presence of an electric field. The drift speed presents a strong variation close to the parameter
value where the drift-speed component along the field direction from parallel becomes antiparallel. Using a
simple phenomenological model and results from a numerical linear stability analysis of scroll waves, I show
that this behavior can be attributed to a resonance of the meander modes with the translation modes of the
spiral wave. Extending this phenomenological model to scroll waves also clarifies the link between the drift
and long wavelength instabilities of scroll waves.
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Spiral waves can be observed in a variety of excitable
systems such as Belousov-Zhabotinsky gels[1], colonies of
the dictyosteliumamoebae[2], and slices of cardiac tissue
[3]. In the latter example, spiral waves of electrical activity
have been shown to be the source of ventricular tachycardia
and some of their instabilities are believed to be involved in
the transition from tachycardia to fibrillation, a deadly ar-
rhythmia(for a review see[4]). This, with the intrinsic inter-
est of those structures, has led to an important research effort
in order to understand the dynamic and instabilities of spiral
waves and of their three-dimensional, analogous, scroll
waves.

In the presence of an external electric field, in the
Belousov-Zhabotinsky(BZ) reaction, the center of rotation
of spiral waves drift with a speed that presents components
both parallel and perpendicular to the applied field[5]. The
parallel component of the drift speed was always found to be
in the direction of the applied field. A numerical study[6]
showed that depending on the parameter regime, the drift
direction of the spiral could be either parallel or antiparallel
to the field. The drift of a spiral wave has been linked[7,8] to
the curvature instability of scroll waves[9,10] that leads
scroll waves to bend, and can finally result in a fibrillation-
like disordered activity of the medium. It was also linked to
the three-dimensional meander of scroll waves[11], which is
the three-dimensional analog of the meander instability
[12,13] characterized by a periodic modulation of the radius
of rotation of the spiral wave. This phenomenon has been
studied from a theoretical point of view[6,8,14,15]. How-
ever, most analytical studies are restricted to the large core
[8] or the small core limit[16] and cannot examine the ob-
served change in drift direction.

In this paper, I present results of numerical computations
that show an unexpected behavior of the drift speed at the
drift direction change. The drift speed varies strongly in the
vicinity of the transition. Using a reduced model of spiral
wave in the presence of a small electric field, I show that this
phenomenon can be attributed to a resonance between mean-
der and translation modes of spiral waves. Finally, using the
analogy between the effect of an electric field and the effects
of a slight curvature of a scroll wave, I extend this model to
scroll waves. This extension sheds some light on the link
between the drift of a spiral wave in an electric field and long

wavelength instabilities of scroll waves, and results obtained
from this model are in good agreement with the results of the
numerical linear stability analysis of scroll waves[7].

I begin with describing the results of a numerical study of
the spiral dynamics in the presence of an electric field using
the Barkley model of an excitable medium(contrary to BZ
systems,u is the only diffusive variable),

]tu =
1

e
fsu,vd + Du + E]xu, s1d

]tv = gsu,vd, s2d

where fsu,vd=us1−udfu−sv+bd /ag, gsu,vd=u−v, andE is
the electric field, directed along thex axis. A homogeneous
system modeled by these equations presents a single stable
equilibrium point u=v=0 and a small perturbation of this
equilibrium point can lead to a large excursion in phase
space before return to equilibrium. The diffusive coupling in
Eq. (1) allows the propagation of solitary waves in one di-
mension. In two dimensions, in the absence of an electric
field sE=0d, a rich variety of wave propagation regime is
observed depending on the values of the parameters[17]. I
will focus here on steadily rotating spirals and present results
obtained along a line of equationb=0.13 in the parameter
space of[17] (along this line no meandering spiral is ob-
served).

In the presence of the electric fieldsEÞ0d, the spiral tip
drifts with a constant velocity(see Fig. 1) that depends on
the parameter values and on the electric field strength. The
drift velocity has components perpendicularsv'd and paral-
lel svid to the field. These velocities vary linearly with the
field in the smallE limit. This allows us to define the drift
coefficienta'=v' /E andai=vi /E [24] in a weak field.

Numerical results(see Fig. 2) show that close to the tran-
sition from antiparallel to parallel drift, the value ofE for
which the linear regime is reached is much smaller than for
the small a and largea region. In addition, close to this
transition, the dependence of the drift coefficientsai+ ia' in
a is strongly nonmonotonous. When increasinga, there is a
strong enhancement of the parallel drift coefficient followed
by a relatively sharp transition from parallel to antiparallel

PHYSICAL REVIEW E 70, 026204(2004)

1539-3755/2004/70(2)/026204(5)/$22.50 ©2004 The American Physical Society70 026204-1



drift, and finally, the drift coefficients decrease rapidly. The
behavior of the perpendicular drift coefficient is character-
ized by a strong enhancement close to the value ofa where
the transition occurs. These results differ strongly from the
results presented in[6], where the drift speeds were com-
puted using the same parameter values and an electric field
of amplitude E=0.3: a monotonic variation of the drift
speeds with the parameter values, which is also observed
here when using high values ofE for which (see Fig. 2, solid
line) the drift amplitude is no longer linear with the field
amplitude.

I now present an ordinary differential equations(ODE)
model of spiral wave drift in an electric field that explains
the strong enhancement of drift coefficients by the resonance
of damped meander modes and translation modes The ODE
model is a modification of models[17,18] that reproduces
the main feature of the spiral wave dynamics and has been
modified in order to take into account the effects of a small
electric field[19]:

ṙ = eifsR0vt − zd + bE, s3d

ż= fm − ivm − s1 + iaduz2ugz+ gEe−if, s4d

ḟ = vt, s5d

wherer is the position of the tip in the complex plane[sx,yd
in the real plane correspond tosRe,Imd in the complex
plane], z is a complex variable describing the meander in the
frame rotating with the spiral,m+ ivm is the eigenvalue as-

sociated with the meander mode, andE is the amplitude of
the field directed along the real axis in the imaginary plane.
In the absence of an electric fieldsE=0d, for m,0, the
steady state is obtained forz=0 and corresponds to the sta-
tionary rotating spiralr =R0 expsivttd at frequencyvt. For
m.0, thez=0 solution of Eq.(4) is no longer stable and the
z variable undergoes a Hopf bifurcation that leads to the
modulation of the radius of curvature of the tip with fre-
quency −vm characteristic of meandering spirals[one should
note that forvt=vm, the meander instabilitysm.0d leads to
the drift of the rotating spiral with constant velocity[17] for
E=0].

I now give some rationale for the terms introduced in Eqs.
(3)–(5). In Eq. (3), the effect of the field can be either inde-
pendent of the relative orientation of the spiral and the field
(the bE term) or depend on it. Nonetheless, the latter case
leads to a precessing term that, when integrated over one
spiral rotation, vanishes at dominant order. Hence, I have
chosen to add only the former term and to disregard the
latter, which would have no effect at leading order. ThegE
3exps−ifd term in Eq.(4) has to take into account that the
field is constant in the laboratory frame, while Eq.(4) is
expressed in the frame rotating with the spiral, that is the
laboratory frame rotated off. Therefore, it is necessary to
add the exps−ifd factor, which expresses the fact that the
meander mode is affected by the field in a way that depends
on the relative orientations of the spiral and of the electrical
field (in the frame rotating with the spiral the field is rotating
with a pulsation, which is −ḟ). No extra term has been added
to Eq. (5) (also expressed in the frame rotating with the

FIG. 1. Tip trajectories in the presence of an electric field fora equal(left to right) to 0.85, 0.91, 0.93, and 0.99 forE=0.03 (top) and
E=0.003(bottom). (Other parameter values areb=0.13 ande=0.02.) The trajectories were recorded for 100 time units(tu) (top) and 400 tu
(bottom) and are represented in boxes of same spatial extension. The arrows show the drift direction. For parameter valuesa=0.85 and 0.99,
the drift velocity behaves almost linearly with the strength of the field(this was checked by performing two simulations, see also Fig. 2(one
should note that this is enough to check whether the linear regime is reached, since an additional point isv=0, E=0) while in the cases
a=0.91 and 0.93 the behavior is still strongly nonlinear.
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spiral), since at dominant order the addition of a term pro-
portional toE exps−ifd would only lead to another constant
drift term in Eq.(3) similar to thebE term.

I focus here on the case where steadily rotating spirals are
stable(i.e., m,0 and vm is the frequency of the meander
mode that can be computed by linear stability analysis[20]
of steady spirals) and describe the effects of a small field in
this situation. At the leading order inE andz, Eq. (4) has for
solutionz=A exps−ivttd with A=gE/ f−m+ is−vt+vmdg. Us-
ing this expression in Eq.(3) leads to a spiral tip drifting
with constant velocity:

vd

E
= b +

gfm − isvt − vmdg
m2 + svt − vmd2 . s6d

This expression qualitatively describes the behavior of the
spiral drift coefficients in the presence of an electric field as
a function of a, presented in Fig. 2, if the two following
conditions are met. First, close to the point where the transi-
tion from antiparallel to parallel drift occurs the meander
frequency,vm becomes equal to the spiral frequencyvt and

m is small (weakly damped meander regime). Second, the
real part ofg is much smaller than its imaginary part in this
region. Else, the expression of Eq.(6) cannot qualitatively
reproduce the behavior observed in Fig. 2. One can check
this statement by looking at the value of the drift coefficient
in the case whereg= igi is imaginary. In this case, the ex-
pression of the drift speed is

vd

E
= b +

gisvt − vmd
m2 + svt − vmd2 + i

gim

m2 + svt − vmd2 , s7d

which well reproduces the behavior presented in Fig. 2 when
m is small.

It is also interesting to note that the drift coefficient, as
expressed in Eq.(6) diverges ifm=0 andvm=vt, that is, at
the codimension two point of the Barkley phase space[17]
(notedP here). This seems unphysical since in the absence of
an electric field, one can see a perfectly stable spiral. None-
theless, as shown in[17], for vm=vt andm.0 the meander-
ing spiral tip trajectory is the one of a steadily drifting spiral
with a constant finite speed even ifE=0 (this situation cor-
responds to the case of an infinite drift coefficient). Hence it
is not surprising that the drift coefficient should diverge
when approachingP in the stable spiral region.

The following part of this paper will show that these re-
quirements are met. In addition, the link between the drift of
a spiral wave and three-dimensional instabilities of scroll
waves will be discussed. One can determine the values ofvt
and vm using the linear stability analysis of steady spiral
previously described in[20] and extended to scroll waves in
[7]. As seen in Fig. 3,vt and vm become equal fora
<0.925(i.e., close to the transition from antiparallel to par-
allel drift). In addition, for this value ofa, the damping of
meander mode is relatively weak. Finally, takingg=0.4i and
b=−0.36−1.3i, the behavior of the drift coefficients is well
approximated by the expression of Eq.(6) in the vicinity of
the transition.

Since the effects of a small electric field on a spiral are
analogous to the effects of the slight curvature of a scroll
wave, it is of interest to consider the three-dimensional ex-
tension of this model. In the following part of the paper, I
will describe the results obtained using this simple model.
The results presented here confirm that the lowkz curvature
of the translation mode[7] is equal to the drift coefficients.
They will also show that, contrary to what was hypothesized
in [11], the drift coefficients are not equal to the opposite of
the low kz curvature of meander modes.

First, consider a slightly curved spiral filament. The evo-
lution equations ofu andv are the three-dimensional analog
of Eqs. (1) and (2) in the caseE=0. They can be rewritten
using the coordinatess,X,Y, wheres is the curvilinear ab-
scissa along the spiral filament[21], X andY are the Carte-
sian coordinates in the plane perpendicular to the filament
(the X axis being oriented along the normal to the filament).
Using this coordinate system and assuming a slight curvature
of the filament, Eq.(2) is unchanged and Eq.(1) reads

]tu =
1

e
fsu,vd + DXYu −

1

r − X
]Xu, s8d

wherer is the radius of curvature of the filament andDXY is
the two-dimensional Laplacian operator in theXY plane. The

FIG. 2. Parameter values aree=0.02 andb=0.13. Top left:vi /E
for the following values of the applied external field: 0.3(solid), 0.1
(long dashed), 0.01 (short dashed), 0.001(dotted), 0.0001s+d, the
dashed-dotted line is the line of the equationvi /E=0. Top right:
v' /E for the same values of the external field,E. Note that for both
larger and smaller values ofa (not shown here) vi /E andv' /E are
independent ofE for theE range explored here. Note that the curves
for E=0.0001 andE=0.001 are indistinguishable, indicating that
for those values, the drift speed is linear inE. Hence the dotted
curves also representa' andai. One should note the very different
shape of the two dotted curves. Similar results(with a not so strong
drift enhancement) were observed for higher values ofb and stron-
ger damping of meander modessb=0.18d. Bottom left: schematic
of the phase diagram in Barkley’s parameter space. In the region
that is left of the dotted line, no spiral waves are observed. On the
right-hand side of this line, rotating and meandering spiral waves
(gray region) are observed. The dashed line corresponds roughly to
vm=vt and the horizontal solid lines correspond to the values ofb
(0.13 and 0.18) for which systematic simulations were performed.
Bottom right:vi as a function of log10E for a=0.92 andb=0.13.E
is varying from 0.0001 to 0.3 and the dashed line is of the equation
vi=9.3v.

SPIRAL WAVE DRIFT IN AN ELECTRIC FIELD AND… PHYSICAL REVIEW E 70, 026204(2004)

026204-3



−f1/sr−Xdg]Xu term, at leading order inX/r is equal to 1/r.
Hence in the new frame, close to the filament, Eq.(1) is
affected by the curvature of the filament in the same way it is
affected by an electric fieldE=−1/r.

Therefore, the three-dimensional extension of the
Barkley-Sandstede model for slightly curved filaments is
given by Eqs.(3)–(5) whereE is replaced by −r9 and where
r9 denotes the second-order derivative ofr along the axis of
the filament. For slightly curved filaments,r9 is equal to the
opposite of its curvature. A linear stability analysis of the
tridimensional ODE model around the steady scroll wave
fz=0,r0sz,td=expsivttdg in the frame rotating with the spiral,
i.e., using a perturbation of the formr =r0sz,td+r1e

ifest+ikzz

andz=z1e
st+ikzz, leads to the following eigenvalue problem:

sSr1

z1
D = S− ivt + bkz

2 − 1

+ gkz
2 m − ivm

DSr1

z1
D , s9d

whose eigenvalues are at leading order inkz:

st = − ivt + Fb +
g

m + isvt − vmdGkz
2, s10d

sm = m − ivm − F g

m + isvt − vmdGkz
2. s11d

These equations show that the curvature of the translation
branch is equal to the opposite of the curvature of the mean-

der mode shifted ofb. It is also equal to the drift speed[see
Eq. (6)]. Hence, contrary to what was proposed by Aranson
et al. [11], the curvature of the meander mode is not equal to
the drift coefficients. There is a shift(that can be relatively
small when the parameter values are close to the line where
vm=vt) as shown in Fig. 3. This might come from the fact
that the parameterb was omitted in Ref.[11].

In addition, since the numerical linear stability analysis of
scroll waves allows us to determinest, sm, m, vt, andvm for
small values ofkz, one can extract from Eqs.(10) and (11)
the expressions of the coefficientsb andg:

b = − skm + ktd, s12d

g = kmfm + isvt − vmdg, s13d

km = − sum P ũmd/fsum P ũmd + svm P ṽmdg, s14d

kt = − sut P ũtd/fsut P ũtd + svt P ṽtdg, s15d

wherekm and kt the respective curvatures of meander and
translation branches atkz=0 and can be expressed as func-
tions of sum,vmd, sut ,vtd and the meander and translation
modes, sũm, ṽmd are sũt , ṽtd are the corresponding adjoint
modes that can be computed[22] andsPd denotes the usual
scalar product in the frame rotating with the spiral.

This method in the vicinity ofvm=vt results in great
variations in the values ofg since it is very sensitive to
possible inaccuracies. However, for values ofa away from
the transition, one can compute bothbsad and gsad with a
good accuracy. They appear then to be smooth functions ofa
that can be easily fitted by a second order ina polynomial.
For a close to the transition from parallel to antiparallel drift,
the polynomial fits ofbsad andgsad take values close to the
ones used previously to fit the drift speed and using the poly-
nomial fit in Eqs.(10) and (11) one reproduces with a good
accuracy the results of the long wavelength linear stability
analysis of scroll waves(see Fig. 3). One should also note
that Eq.(13), together with the results of the numerical three-
dimensional linear stability analysis of scroll waves, give
some rationale forg being an imaginary number close to the
transition from antiparallel to parallel drift. Indeed, close to
the transition,km is mainly directed along the imaginary axis
in the complex plane andvm<vt, those two results lead tog
being directed almost along the imaginary axis.

To conclude, using smoothly varying coefficientsb andg,
this model quantitatively reproduces the results obtained nu-
merically when considering both the drift of a spiral wave in
the presence of an external field and the long wavelength
instabilities of scroll waves(meander and curvature). The
reduced model brings some clarification on the mechanism
of the drift of a spiral wave in the presence of an electric
field, showing that the change in the sign of drift velocity
parallel to the electric field can be attributed to a resonance
between meander and translation modes and that this reso-
nance leads to a strong increase in the drift coefficients. One
should also note that despite that the results presented here
are formally valid form!1, the resonance described here
influences the drift speed as a function of parameters for a

FIG. 3. Top left: computed frequencies of the meander mode
s3d and of the translation modes+d as a function of the control
parametera (e=0.02 andb=0.13). vm and vt are equal fora
<0.925. Top right: growth rate of the meander mode as a function
of a (other parameters unchanged). The maximal value ofm is
reached fora<0.920. Bottom left: curvatures of the real part of the
translation branchess+d and opposite of the curvature of the real
part of the meander branchess3d at kz=0. Bottom right: Computed
curvatures of the imaginary part of the translation branches and
opposite of the curvature of the imaginary part of the meander
branches atkz=0. Fora=0.92 and 0.93, the computed values of the
curvatures present an uncertainty of order 1 due to the hybridization
of meander and translation modes. The dashed lines in bottom fig-
ures show the fit obtained using Eq.(10) for the translation modes
and a second-order polynomial fit ofgsad andbsad. The fit for the
meander modes is not shown here.
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wider parameter regime and its effects can be observed
rather far away from the Barkley’s codimension two point
[see Fig. 2(a) (inset)] as long as meander modes are not too
damped. I also hope those results can be checked experimen-
tally in a BZ system where meandering of spiral waves has
been well characterized[23].
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